| D Fehlings, | A Makino, | P. Church, | R Banihani, K | Thomas | , M Luther, | S Lam-Damji, | B Vollmer, I | L Haataja | |-------------|-----------|------------|---------------|---------|-------------|--------------|--------------|-----------| | FM Cowan | DM Rome | o IM Geor | ne S Kumar | Switzer | (May 2024 | 1) | | | | Name: | | |----------------|--| | MRN: | | | Date of Birth: | | ## Hammersmith Infant Neurological Examination (HINE): Score Interpretation Aid for Children Receiving Neonatal Follow-Up Care | Clinical history: | <i>y</i> : | | |-------------------|------------|--| | | | | Brain imaging (if available): | Visit | Child's Age
(corrected) | Child's
Global
HINE Score | HINE
Asymmetry
Score | Corrected
Age for GMA
(if available) | GMA
Category
(if available) | Interpretation/Action | Discussed with family | |-------|----------------------------|---------------------------------|----------------------------|--|-----------------------------------|-----------------------|-----------------------| | 1 | | | | | | | 0 | | 2 | | | | | | | 0 | | 3 | | | | | | | 0 | | 4 | | | | | | | 0 | | 5 | | | | | | | 0 | ## **HINE Scoring Aid Reference Information:** - Interpret HINE scores with clinical reasoning (e.g., term versus preterm, risk factors for CP, health co-morbidities, brain imaging, and General Movements Assessment (GMA)) when comparing to those from typically developing term infants. Follow the trajectory of HINE scores over time. - The table provides expected global scores (median/ranges) for term^{1,2} (column 2) and preterm infants^{3,4} of various gestational ages (column 3,4) with typical 2-year development. 10th percentile scores (optimality scores) (equal to or above) which infants are considered to have typical neurological performance^{1,4} is provided where available (column 2,4). - Typically developing preterm infants have median global scores that range from 9 points at 3 months to 3.5 points at 12 months lower than typically developing term-born infants (column 3,4)3.4. There is also a wider range of scores around the median in preterms. - CP cut-off scores (column 5) are global scores below which term and preterm infants with etiologic risk for CP (e.g., preterm, neonatal encephalopathy) have a high probability of developing CP5. Refer for early intervention. - Infants with unilateral CP may not have low global scores but can have ≥4 asymmetries representing significant asymmetric neurologic performance⁶. Refer for early intervention if ≥4 asymmetries are present regardless of infant's age. | Column 1 | Column 2 | Column 3 | Column 4 | Column 5 | | |-------------|---|---|---|---|--| | | Global scores for typically | Global scores for low-risk | Global scores for low-risk | Cut-off scores for high | | | | developing term born infants ^{1,2} | LPT and VPT infants ³ | EPT infants⁴ | probability of CP⁵ | | | Child's | 37-42 weeks GA | mean GA 32 weeks | mean GA 27 weeks | All birth gestational ages but | | | Age | | (range 27-36) | (range 23-31) | definitive data not available | | | (corrected) | Median (range) | Median (range) | Median (range) | for EPT infants | | | 3 months | 67 (62.5*-69) ² | 62 (51-69) ³ | 58 (47-69) (10 th % 53) ⁴ | ≤56 (sen 96% sp 85%) ⁵ | | | 6 months | 73 (69*-76.5) ² | 66 (52-72) ³ | 67 (54-76) (10 th % 62) ⁴ | ≤59 (sen 90% sp 89%) ⁵ | | | 9 months | N/A | 70.5 (57-76) ³ | 71.5 (62-78) (10 th % 67) ⁴ | ≤62 (sen 90% sp 91%) ⁵ | | | 12 months | 76 (63-78) (10 th % ≥73) ¹ | 72.5 (60-77) ³ | 73.5 (67-78) (10 th % 70) ⁴ | ≤65 (sen 91% sp 90%) ⁵ | | | 18 months | 78 (71-78) (10 th % ≥74) ¹ | N/A | N/A | N/A | | | | 10 th percentile scores (10 th %):
90% of infants score at or above
this level. * See legend in graph
below. | Data for LPT and VPT infants
are combined – medians are
similar, but the range span is
narrower for LPT than VPT | Note median scores are considerably lower for EPT infants than FT, LPT and VPT infants at 3 months. | A global score <40 at any age is highly predictive of CP GMFCS III-V at 2 years of age ⁷ . | | N/A not available, Low-risk - no additional CP etiologic risk aside from being preterm^{3,4},LPT Late preterm 33-36 weeks gestational age (GA), VPT very preterm 27-32 weeks GA, EPT extremely preterm (23 -31 weeks GA) as defined in this study⁴, sen (sensitivity), sp (specificity) ¹ Haataja L, et al. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J Pediatr. 1999 doi: 10.1016/s0022.3476(99)70016-8. PMID: 10431108. 2 Haataja L, et al. Application of a scorable neurologic examination in healthy term infants aged 3 to 8 months. J Pediatr. 2003 doi: 10.1067/s0022.3476(39)3033-7. PMID: 14603891. 3 Romeo DM, et al. Early psychomotor development of low-risk preterm infants: Influence of gestational age and gender. Eur J Paediatr Neurol. 2016 doi: 10.1016/j.ejnp.2016.04.011. PMID: 27142353. 4 Romeo DM, et al. "Hammersmith Infant Neurological Examination in low-risk infants born very preterm: a longitudinal prospective study. Dev Med Child Neurol. 2022 doi: 10.1111/ldmcn.15201. PMID: 35298030. 4 Romeo DM, et al. Neurological assessment in infants discharged from a neonatal intensive care unit. Eur J Paediatr Neurol. 2013 doi: 10.1016/j.ejnp.2012.09.006. PMID: 23062755. 4 Pietruszewski, L, et al. HINE Clinical Use to Recommend Therapist Assessment of Functional Hand Asymmetries. Pediatr Phys Ther 2021 doi: 10.1097/EP.000000000000822. PMID: 34147428 7 Novak I, et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017 Sep 1;171(9):897-907. doi: 10.1016/j.mapediatrics.2017.1689. PMID