#### In This Section



#### **Potentially Better Practices**

<u>#5.</u> Establish computerized order entry(CPOE) for Parenteral Nutrition (PN) <u>20</u>

**#6.** Parenteral nutrition, including dextrose and protein should be started within the first 24 hours of life. **21** 

**<u>#7.</u>** Start parenteral lipids within the first 24 hours of life. **22** 

**#8.** Discontinue parenteral nutrition, with removal of central catheters, as soon as adequate enteral nutrition is established.

<u>23</u>

24

**#9.** Establish protocols for long term management in those who become parenteral nutrition dependent and/or develop PN-associated cholestasis.



<u>**# 6.</u>** Total Parenteral Nutrition for VLBW Infants <u>26</u></u>

**# 7.** Monitoring Guidelines for VLBWInfants on Parenteral Nutrition**27** 

References

<u>28</u>

### Parenteral Nutrition for VLBW Infants

#### Introduction

The development of sophisticated techniques for providing short- and long-term parenteral nutrition (PN) to critically ill infants has been one of the major advances in neonatology of the last several decades. While there is still a wide variation in practice in how parenteral nutrition is used to support VLBW infants, there is a growing body of literature to support evidence-based recommendations for numerous best practices.<sup>1</sup> There are currently a number of excellent reviews of neonatal nutrition, including information on early parenteral nutrition.<sup>1-3</sup>

In recent years, there have been multiple parenteral nutrition component supply issues. It is important to stay up to date with your pharmacy supply and understand the consequences if you do run out of a particular product.<sup>4,5</sup> The sites listed below are resources to check for national shortages, estimated time to replenish, and strategies to minimize detrimental outcomes.

- <u>American Society of Parenteral and Enteral Nutrition</u>
- <u>Federal Drug Administration</u>





# Develop and use computerized provider order entry (CPOE) for Parenteral Nutrition (PN).

#### Background, Rationale, and Goals

- PN is a high-risk medication with ample potential for order input, mixing, and hanging errors. CPOE facilitates clear, timely communication between provider, pharmacy, and bedside nursing.
- Most commercially available CPOE programs can be customized to guide clinical decision support and ensure safeguards to minimize order errors and, in some studies, found to decrease mortality.

## Recommendations, Guidelines and Algorithms

- Investigate the CPOE program options available to your institution
  - Is it compatible with the TPN compounder?
  - Is it compatible with the EMR?
  - Safety record at other institutions?
  - Program support local vs. remote?
- Interdisciplinary input on the CPOE program

   MD, NNP, PharmD, RD, RN, and technical support
  - Work flow assessment
  - 'Double Check'/Verification of order by clinical pharmacist
  - Who has access to the program? What level of access?
- Clinical Decision Support and Safeguards
  - Different protocols for different populations (neonate vs. pediatric vs. adult)
  - Copying previous order vs. entering new order daily

- Ability to see past orders and laboratory trends
  - In the same program? (safer)
  - Will the provider have to alternate between different programs? (riskier)
- Set minimum and maximum ordering limits
- Override options/potential
  - Who has the authority?
  - Procedure

#### Quality and Process Improvement

- If CPOE not commonly used, identify obstacles to implementation
- Once CPOE is implemented, identify shortcomings and optimize abilities

- Adverse (& 'Near Miss') Drug Events
- Prescription order error
- Product waste
- Time to attain macronutrient goals
- Time to re-gain BW
- Pharmacist verification time &/or intervention frequency

### POTENTIALLY BETTER PRACTICE #6

Parenteral nutrition, including dextrose, protein, and lipids should be started as soon as possible after admission, but never greater than 24 hours of life.

#### Background, Rationale, and Goals

- In order to maximize growth, minimize catabolism, and support neurocognitive development, infusing nutrition with protein as soon as possible after birth has become the standard of care.<sup>1,3,9,10</sup>
- Amino Acids can be started as high as 3 g/kg/day to minimize catabolism.
- Macronutrients should be increased, as tolerated, so that infants receive adequate amino acids (up to 4.0 g/kg/d) and non-protein calories (80-100 kcal/ kg/d) within the first five days of life
- Understand your facility's PN availability
  - In-house compounder vs. outsourced production
  - If it is outsourced, establish inventory needs
- Overcome the perception that early amino acid administration is of limited benefit, potentially toxic, or more expensive.
- Amino Acid dose may be limited by fluid restriction.

# Recommendations, Guidelines and Algorithms

- Standardized policies and admission order sets
- Including monitoring standards<sup>11</sup>
- Availability of "pre-mixed" amino acid containing parenteral nutrition solutions in hospital pharmacy<sup>9,12,13</sup> OR the ability to obtain individualized parenteral nutrition solutions within the first few hours of life.
- Understand how early infusion of parenteral nutrition may effect electrolytes.<sup>14</sup>

#### Quality and Process Improvement

- Understand current state and map out ideal process.<sup>3,13,15</sup>
- PDSA Cycles, as necessary
- Measurements before and after process changes

Refer to **TOOL 6** on page 26 and **TOOL 7** on page 27 for guidelines on parenteral nutrition for VLBW infants.

- % of VLBW infants started on amino acids at ≤ 2 hrs of age or as part of the first IV maintenance fluids
- TPN hung by \_\_\_\_ hours of life
- % of VLBW infants on amino acids by 24 hours of age
- % of VLBW infants receiving 3-4 g/kg/d parenteral protein by 72 hours of age
- % of VLBW infants receiving 80-100 nonprotein kcal/kg/d by 5 days of age
- Total TPN days

### POTENTIALLY BETTER PRACTICE #7



Start parenteral lipids within the first 24 hours of life. Lipids can be started at doses as high as 2 g/kg/d. Lipids can be increased to doses as high as 3.0-3.5 g/kg/day over the first few days of life.

#### Background, Rationale, and Goals

- Early lipids are well tolerated by VLBW infants & are essential components of brain structure.<sup>10,16</sup>
- Delayed introduction of lipids may have adverse consequences.<sup>16</sup>
- Prolonged IV lipids may increase risk for hyperlipidemia and Parenteral Nutrition Associated Cholestasis (PNAC).
- Can monitor triglyceride levels, with goal < 200 mg/dl
- Calls for regular monitoring of direct bilirubin and LFTs.<sup>17,18.</sup>
- Newer, fish oil based IV Lipids may be associated with less PNAC19; however, they may not prevent PNAC.<sup>1-3,20</sup>
- If used, SMOFlipid<sup>®</sup> dose should be 2.5-3 g/kg/day in order to reduce the risk of essential fatty acid deficiency (EFAD).<sup>21</sup> Refer to <u>PBP #9</u> on page 24 for more information.

#### Quality and Process Improvement

• Standardized policies and admission order sets which include IV Lipid administration starting within the first 24 hours of life

- Measure provider consistency in implementation
- Time of order placement to time of lipid infusion start running
- % of VLBW infants receiving lipids by 24 hours of age
- Day of Life 3 g Lipid/kg/day is reached

Discontinue parenteral nutrition, with removal of central catheters, as soon as adequate enteral nutrition is established.

#### Background, Rationale, and Goals

- Understand that leaving a central line in place caries some risk of catheter-associated infection
- Overcome the perception that the benefit of several more days of lipid administration outweighs the risk of catheter-associated infection
- As enteral feeds advance, advantages of more parenteral nutrition are outweighed by the risks of continued central vascular access and infection<sup>22-24.</sup>
- As feeds advance, optimize the nutrient density of the diminishing volume of PN by giving the maximum amount of Amino Acids to minimize the calorie and protein 'gap' that can occur during this transition from PN to EN <sup>25</sup>

#### Quality and Process Improvement

- Define the current state and map out ideal processes.<sup>3,13,15</sup>
- Plan Do Study Act (PDSA) Cycle(s), as necessary
- Develop & implement standardized policies and order sets which include discontinuation of parenteral nutrition when adequate enteral calories established. (See Section III)
  - Fortify feeds before PN is discontinued
  - May discontinue IV Lipids prior to stopping parenteral nutrition to maximize Amino Acid content of the remaining volume and as fortified enteral feeding volume and energy is increasing

- Number of central line days
- Number of days on PN
- Hospital acquired infection (HAI)/Central line-associated bloodstream infections (CLABSI) Rates

cpacc

# Long term management in those who become PN dependent &/or develop Parenteral Nutrition Associated Cholestasis (PNAC).

#### Background, Rationale, and Goals

- The development of PNAC is strongly correlated with duration of time on PN and the only evidence for prevention is initiating and advancing enteral feeds.
- Unfortunately, some VLBW infants may remain reliant on parenteral nutrition for over 30 days.
- Lack of enteral feeding, immature organ function, hypoxia, infection, PN components, and hepatotoxic medications are all risk factors that may lead to liver dysfunction.
- Risks of macro- and micronutrient deficiencies can have deleterious effects if they are not corrected.<sup>5,26.</sup>

## Recommendations, Guidelines and Algorithms

- If/when the D. Bili becomes >2 mg/dL:
  - Although decreasing the IV Lipid dose to 1 g/ kg/day has been done, it is controversial. <sup>27,28</sup>
    - The evidence for this strategy is inconclusive and it is not generally recommended.
    - This strategy may significantly decrease energy provided
    - Fat is essential for brain growth and neurodevelopment
  - If fish oil based IV Lipids are available<sup>27</sup>, can transition from Intralipid<sup>®</sup>
    - Omegaven<sup>®</sup> is only available in the United States as an investigational drug, therefore access is limited
- Smoflipid<sup>®</sup> is approved by the FDA for use in

adults; however, at the time of this publication, it is not explicitly approved for use in pediatrics and infants though we acknowledge there are some institutions who are using it 'off label'

- If the Smoflipid<sup>®</sup> dose is restricted, monitor for EFAD closely<sup>28</sup> and elevated serum Vitamin E.
- Limiting IV Dextrose intake may be more advantageous than IV Lipid dose minimization in decreasing risk of PNAC<sup>18</sup>
- Cycling PN is not currently recommended for VLBW due to the high risk of hypoglycemia and the potential for other metabolic abnormalities
- Ursodiol (ursodeoxycholic acid, common brand: Actigall) promotes bile flow; however data is limited in its use and effectiveness in VLBW infants<sup>27</sup>
- Standardized policies and order sets which on TPN day #30, high risk micronutrients for deficiency are monitored and corrected, if needed
  - Zinc
  - Selenium
  - Copper
  - Possibly Vitamin D, or other fat soluble vitamins if the infant is demonstrating liver dysfunction

#### Quality and Process Improvement

- Review current policies and procedures for long term TPN management
- Update practice and order-sets, as needed

- Annual number of babies on PN for >30 days
- Number of those with altered micronutrient status on PN for 30 days
- Number of diagnoses of cholestatic jaundice due to PN per year



#### cpacc

#### Total Parenteral Nutrition for VLBW Infants

| Nutrient                     | Initiate                                                                                  | Advance                                                         | Goal               | Other Info                                                                                                                            |
|------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Amino Acids                  | 3 g/kg/day<br>(or maximum allowed<br>if volume restricted)                                | 0.5-1 g/kg/day (depen-<br>dent on volume and renal<br>function) | 4 g/kg/day         |                                                                                                                                       |
| Fat                          | 0.5-2 g/kg/day                                                                            | 0.5-1 g/kg/day (depending on volume and tolerance)              | 3 g/kg/day         | Dose may need to be restricted if PNAC develops                                                                                       |
| Carbohydrate                 | 4-6 mg CHO/kg/min                                                                         | 1-2 mg CHO/kg/min                                               | <12 mg CHO/kg/min  |                                                                                                                                       |
| Pediatric IV<br>Multivitamin | 2 mL/kg/day (Goal)                                                                        |                                                                 |                    |                                                                                                                                       |
| Sodium                       | 0-1 mEq/kg/day                                                                            | 0-1 mEq/kg/day                                                  | 2-4 mEq/kg/day     | May need more, adjust<br>dose per labs                                                                                                |
| Potassium                    | 0-0.5 mEq/kg/day                                                                          | 0-1 mEq/kg/day                                                  | 2-4 mEq/kg/day     | May need more, adjust<br>dose per labs                                                                                                |
| Calcium                      | Up to 400 mg/kg/day                                                                       | 50-200 mg/kg/day                                                | 400-600 mg/kg/day  | Ideal Ca:Phos ratio = 1.3-<br>1.7 mg Ca:1 mg Phos                                                                                     |
| Phosphorous                  | Up to 0.5 mM/kg/day                                                                       | 0.5-1 mM/kg/day                                                 | 1-2 mM/kg/day      |                                                                                                                                       |
| Magnesium                    | 0-0.2mEq/kg/day*                                                                          |                                                                 | 0.2-0.3 mEq/kg/day | *do NOT give if you know<br>mom received Mg prior to<br>delivery                                                                      |
| Zinc                         | 400 mcg/kg/day<br>(Goal)                                                                  |                                                                 |                    |                                                                                                                                       |
| Copper                       | 20 mcg/kg/day (Goal)                                                                      |                                                                 |                    | May need to give up to 30<br>mcg/kg/day, if found to be<br>deficient; OR may need to<br>decrease dose or hold in<br>setting of PNAC26 |
| Selenium                     | If still on PN @ 30<br>days, check for defi-<br>ciency and start at least<br>2 mcg/kg/day |                                                                 |                    | IF found to be deficient,<br>may need to increase dose<br>to 3-4 mcg/kg/day                                                           |
| Carnitine                    | 3-5 mg/day                                                                                |                                                                 |                    | Not necessary to routinely add                                                                                                        |
| Heparin                      | 0.5-1 unit/mL                                                                             |                                                                 |                    |                                                                                                                                       |

Adapted from: Moyer-Mileur LJ. <u>Anthropometric and laboratory assessment of very low birth weight infants: the</u> <u>most helpful measurements and why.</u> Semin Perinatol. 2007;31:96-103.



#### Monitoring Guidelines for VLBW Infants on Parenteral Nutrition

| Measurement                                                   | Initial Phase<br>(usually <1 week)                          | Stable Phase*         |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------|-----------------------|--|--|--|
| Growth                                                        |                                                             |                       |  |  |  |
| Weight                                                        |                                                             | Daily                 |  |  |  |
| Length                                                        | Baseline                                                    | Weekly                |  |  |  |
| Head Circumference                                            |                                                             | Weekly                |  |  |  |
| Intake and Output                                             | Daily                                                       | Daily                 |  |  |  |
| Glucose                                                       |                                                             |                       |  |  |  |
| Serum                                                         | Baseline                                                    | 1-3 x/week, as needed |  |  |  |
| Meter                                                         | Baseline, and as needed                                     |                       |  |  |  |
| Urine                                                         | As indicated                                                |                       |  |  |  |
| Electrolytes (Na, K+)<br>Calcium, Magnesium, &<br>Phosphorous |                                                             |                       |  |  |  |
| LFTs                                                          | Baseline                                                    |                       |  |  |  |
| Direct &/or Conjugated Bilirubin                              |                                                             |                       |  |  |  |
| Alkaline Phosphatase                                          |                                                             |                       |  |  |  |
| Triglycerides                                                 | Baseline, and daily with each increase in dose of IV Lipids | 1-2 x/week, as needed |  |  |  |
| BUN and Creatinine                                            | Baseline, 2-3x/week                                         | 1-3 x/week, as needed |  |  |  |
| Serum Proteins                                                | Baseline                                                    |                       |  |  |  |
| Blood Cell Count                                              | Daschile                                                    |                       |  |  |  |
| Vitamin or other Microminerals                                |                                                             | As needed             |  |  |  |
|                                                               |                                                             |                       |  |  |  |

\*Clinically and metabolically stable infants on PN for a prolonged period of time may be able to space out their laboratory monitoring outside of the recommended time frames.

Adapted from: Moyer-Mileur LJ. <u>Anthropometric and laboratory assessment of very low birth weight infants: the most helpful measurements and why.</u> Semin Perinatol. 2007;31:96-103.



**References** 

- 1. Patel P, Bhatia J. Total parenteral nutrition for the very low birth weight infant. Semin Fetal Neonatal Med 2017;22:2-7.
- 2. Hay WW. Optimizing nutrition of the preterm infant. Zhongguo Dang Dai Er Ke Za Zhi 2017;19:1-21.
- 3. Kumar RK, Singhal A, Vaidya U, Banerjee S, Anwar F, Rao S. Optimizing Nutrition in Preterm Low Birth Weight Infants-Consensus Summary. Front Nutr 2017;4:20.
- 4. Plogsted S, Adams SC, Allen K, et al. Parenteral Nutrition Electrolyte and Mineral Product Shortage Considerations. Nutr Clin Pract 2016;31:132-4.
- 5. Chen CH, Harris MB, Partipilo ML, Welch KB, Teitelbaum DH, Blackmer AB. Impact of the Nationwide Intravenous Selenium Product Shortage on the Development of Selenium Deficiency in Infants Dependent on Long-Term Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2016;40:851-9.
- 6. Palma JP, Sharek PJ, Classen DC, Longhurst CA. Neonatal Informatics: Computerized Physician Order Entry. Neoreviews 2011;12:393-6.
- 7. Longhurst CA, Parast L, Sandborg CI, et al. Decrease in hospital-wide mortality rate after implementation of a commercially sold computerized physician order entry system. Pediatrics 2010;126:14-21.
- 8. Hermanspann T, Schoberer M, Robel-Tillig E, et al. Incidence and Severity of Prescribing Errors in Parenteral Nutrition for Pediatric Inpatients at a Neonatal and Pediatric Intensive Care Unit. Front Pediatr 2017;5:149.
- 9. Rigo J, Senterre T. Intrauterine-like growth rates can be achieved with premixed parenteral nutrition solution in preterm infants. J Nutr 2013;143:2066S-70S.
- 10. Raman M, Almutairdi A, Mulesa L, Alberda C, Beattie C, Gramlich L. Parenteral Nutrition and Lipids. Nutrients 2017;9.
- 11. Moyer-Mileur LJ. Anthropometric and laboratory assessment of very low birth weight infants: the most helpful measurements and why. Semin Perinatol 2007;31:96-103.
- 12. Ribed Sánchez A, Romero Jiménez RM, Sánchez Gómez de Orgaz MC, Sánchez Luna M, Sanjurjo Sáez M. Aggressive parenteral nutrition and growth velocity in preterm infants. Nutr Hosp 2013;28:2128-34.
- 13. Kuzma-O'Reilly B, Duenas ML, Greecher C, et al. Evaluation, development, and implementation of potentially better practices in neonatal intensive care nutrition. Pediatrics 2003;111:e461-70.
- 14. Guellec I, Gascoin G, Beuchee A, et al. Biological Impact of Recent Guidelines on Parenteral Nutrition in Preterm Infants. J Pediatr Gastroenterol Nutr 2015;61:605-9.
- 15. Johnson MJ, Leaf AA, Pearson F, et al. Successfully implementing and embedding guidelines to improve the nutrition and growth of preterm infants in neonatal intensive care: a prospective interventional study. BMJ Open 2017;7:e017727.
- 16. Salama GS, Kaabneh MA, Almasaeed MN, Alquran MIa. Intravenous lipids for preterm infants: a review. Clin Med Insights Pediatr 2015;9:25-36.
- 17. Choi YJ, Bae HJ, Lee JY, et al. Analysis of risk factors for lipid intolerance of intravenous fat emulsion in very low birth weight infants. Arch Pharm Res 2015;38:914-20.
- 18. Gupta K, Wang H, Amin SB. Parenteral Nutrition-Associated Cholestasis in Premature Infants: Role of Macronutrients. JPEN J Parenter Enteral Nutr 2016;40:335-41.

- 19. Yang CH, Perumpail BJ, Yoo ER, Ahmed A, Kerner JA. <u>Nutritional Needs and Support for Children with</u> <u>Chronic Liver Disease</u>. Nutrients 2017;9.
- 20. Repa A, Binder C, Thanhaeuser M, et al. <u>A Mixed Lipid Emulsion for Prevention of Parenteral Nutrition</u> <u>Associated Cholestasis in Extremely Low Birth Weight Infants: A Randomized Clinical Trial.</u> J Pediatr 2017.
- 21. Anez-Bustillos L, Dao DT, Fell GL, et al. <u>Redefining essential fatty acids in the era of novel intravenous lipid</u> <u>emulsions.</u> Clin Nutr 2017.
- 22. Ainsworth S, McGuire W. <u>Percutaneous central venous catheters versus peripheral cannulae for delivery of</u> <u>parenteral nutrition in neonates.</u> Cochrane Database Syst Rev 2015:CD004219.
- 23. Stoll BJ, Hansen NI, Bell EF, et al. <u>Trends in Care Practices</u>, <u>Morbidity</u>, and <u>Mortality of Extremely Preterm</u> <u>Neonates</u>, 1993-2012. Jama 2015;314:1039-51.
- 24. Soares BN, Pissarra S, Rouxinol-Dias AL, Costa S, Guimarães H. <u>Complications of central lines in neonates</u> admitted to a level III Neonatal Intensive Care Unit. J Matern Fetal Neonatal Med 2017:1-7.
- 25. Brennan AM, Fenton S, Murphy BP, Kiely ME. <u>Transition Phase Nutrition Recommendations: A Missing Link</u> in the Nutrition Management of Preterm Infants. JPEN J Parenter Enteral Nutr 2017:148607116686289.
- 26. Domellöf M. Nutritional care of premature infants: microminerals. World Rev Nutr Diet 2014;110:121-39.
- 27. Satrom K, Gourley G. Cholestasis in Preterm Infants. Clin Perinatol 2016;43:355-73.
- 28. Nandivada P, Fell GL, Gura KM, Puder M. Lipid emulsions in the treatment and prevention of parenteral nutrition-associated liver disease in infants and children. Am J Clin Nutr 2016;103:629S-34S.