In fetuses with congenital lung masses, decreased ventricular and atrioventricular valve dimensions are associated with lesion size and clinical outcome.
INTRODUCTION: The clinical importance of mass effect from congenital lung masses on the fetal heart is unknown. We aimed to report cardiac measurements in fetuses with congenital lung masses and to correlate lung mass severity/size with cardiac dimensions and clinical outcomes.
METHODS: Cases were identified from our institutional database between 2009 and 2016. We recorded atrioventricular valve (AVVz) annulus dimensions and ventricular widths (VWz) converted into z scores, ratio of aortic to total cardiac output (AoCO), lesion side, and congenital pulmonary airway malformation volume ratio (CVR). Respiratory intervention (RI) was defined as intubation, extracorporeal membrane oxygenation (ECMO), or use of surgical intervention prior to discharge.
RESULTS: Fifty-two fetuses comprised the study cohort. Mean AVVz and VWz were below expected for gestational age. CVR correlated with ipsilateral AVVz (R = -.59, P < .001) and ipsilateral VWz (-0.59, P < .001). Lower AVVz and AoCO and higher CVR were associated with RI. No patient had significant structural heart disease identified postnatally.
CONCLUSION: In fetuses with left-sided lung masses, ipsilateral cardiac structures tend to be smaller, but in our cohort, there were no patients with structural heart disease. However, smaller left-sided structures may contribute to the need for RI that affects a portion of these fetuses.
Mardy C, Blumenfeld YJ, Arunamata AA, et al. "In fetuses with congenital lung masses, decreased ventricular and atrioventricular valve dimensions are associated with lesion size and clinical outcome." Prenat Diagn. 2020;40(2):206-215.PubMed